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Extracted Features

- Age - eFGR - Vital signs(Heart rate, Respiratory
- Gender - Number of Diagnoses rate etc.)

- Urine Output - Number of Procedures

- Vasopressor Amount - Drug severity

- Weight - Drug mortality

- BMI - Usage of Nephrotoxic

- Race - Renal Replacement Therapy

- Admission Time - Invasive mechanical ventilation

- Length of Stay - Lab Measurements(Hemoglobin,

- Baseline Creatinine Potassium etc.)
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Package Version
ace_tools 0.0
annotated-types 0.7.0
asttokens 2.41
backcall 0.2.0
blis 0.7.10
Brotli 1.1.0
catalogue 2.0.10
catboost 1.2.7
certifi 2024.8.30
cffi 1.17.0
charset-normalizer 3.3.2
clarabel 0.9.0
click 8.1.7
cloudpathlib 0.19.0
cloudpickle 3.0.0
colorama 0.4.6
comm 0.2.2
confection 0.1.4
contourpy 111
cramjam 2.8.3
cvxopt 1.3.2
cvXpy 1.5.2
cycler 0.12.1
cymem 2.0.8
dask 2023.5.0
debugpy 1.8.5
decorator 5.1.1
ecos 2.0.14

en-core-web-md  3.7.1
exceptiongroup  1.2.2
executing 2.1.0

fa ncyimp_ute 0.7.0

fastparquet 2024.2.0
filelock 3.16.1
fonttools 4531
fsspec 2024.9.0
graphviz 0.20.3

h2 4.1.0

hpack 4.0.0
hyperframe 6.0.1
idna 3.10
imbalanced-learn 0.12.3
imblearn 0.0

importlib_metadata 8.5.0
importlib_resources 6.4.5

iniconfig 2.0.0
ipykernel 6.29.5
ipython 8.12.2
jedi 0.191
Jinja2 3.1.4
joblib 1.4.2

jupyter_client 8.6.3
jupyter_core .72

kiwisolver 1.4.7
knnimpute 0.1.0
langcodes 3.4.0
language_data 1.2.0
lightgbm 4.5.0
locket 1.0.0
marisa-trie 1.1.0

markdown-it-py  3.0.0
MarkupSafe 215
matplotlib 3.75
matplotlib-inline 0.1.7

mdurl 0.1.2
mpmath 1.3.0
murmurhash 1.0.10
nest_asyncio 1.6.0
networkx 31

nose 1.3.7
numpy 1.24.4
osqgp 0.6.7.post1
packaging 241
pandas 2.0.3
parso 0.8.4
partd 1.4.1
pickleshare 0.75
pillow 10.4.0

pip 24.2
platformdirs 4.3.6
plotly 5.24.1
pluggy 1.5.0
preshed 3.09
prompt_toolkit  3.0.47
psutil 6.0.0
pure_eval 0.2.3
pyarrow 17.0.0
pycparser 2.22
pydantic 2.8.2
pydantic_core 2.201
Pygments 2.18.0
pyparsing 3.1.4
PySocks 1.71
pytest 8.33
python-dateutil 2.9.0
pytz 2024.2
pywin32 306

PyYAML 6.0.2
pyzmq 26.2.0
qdldl 0.1.7.post4
requests 2.32.3
rich 13.81
scikit-learn 1.3.2
scipy 1.101

scs 3.2.7
seaborn 0.13.2
setuptools 75.1.0
shellingham 1.5.4
six 1.16.0
smart_open 704
spacy 3.75
spacy-legacy 3.0.12

spacy-loggers 1.0.5

srsly 2.4.8
stack-data 0.6.2
sympy 1.13.3
tenacity 9.0.0

thinc 8.25
threadpoolctl 3.5.0

tomli 2.01

toolz 0121

torch 2.4.1+cu118
torchaudio 2.41+cul18
torchvision 0.19.1+cu118
tornado 6.4.1

tgdm 4.66.5
traitlets 5.14.3

typer 0.12.5
typer-slim 0.12.5

typing_extensions 4.12.2

tzdata 20241
urllib3 2.2.3
wasabi 1.1.2
wcwidth 0.2.13
weasel 0.41
wheel 0.44.0

win-inet-pton 1.1.0

wrapt 1.16.0
xgboost 2.1.1
zipp 3.20.2
zstandard 0.23.0
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Ensemble Model Performance Metrics for All Cases
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F1l Score

Model Performance Comparison
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Gender Groups F1l-score (All Cases)
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